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Abstract

In the framework of the quantum mechanical measurement theory we study measure-
ments where the state of the object and the state of the apparatus are initially already
correlated. We show that the usual difficulties extend to the measuring schemes con-
sidered here. The general structure of the theory is clarified.

1. Introduction

In abstraction of many actual measurement procedures in atomic and
nuclear physics, the formal quantum mechanical measurement theory (FQMT)
considers the following extremely simplified situation: At some initial time
(the time before the measurement) the object considered (e.g., elementary
particle, atom, molecule) is in some state and the measurement apparatus
(e.g., Geiger counter, bubble chamber, photographic plate, etc.) is in its neutral
state (untriggered or metastable state). The object and the apparatus interact
in such 2 way that at some final time (the time after the measurement) the
probability distribution of the apparatus observable in the final state is corre-
lated to the probability distribution of the object observable in the initial state.
By “reading the scale” one determines the distribution of the values of the
apparatus observable from which one can infer the distribution of the values of
the object observable. In this sense, the object observable is measured.

The FQMT is formal, since it only considers abstract Hilbert spaces, abstract
observables, and states. Furthermore, the interaction is represented by a suit-
able unitary transformation in the Hilbert space of the joint system. This
unitary transformation is not constructed with the use of a physically realistic
Hamiltonian operator. However, the FQMT is not unphysical. In fact, as shown
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by different authors, there are many actual measuring procedures that, approxi-
mately, fall under the general scheme of FQMT. As one typical example we
should mention the Stern-Gerlach experiment, as analyzed for instance by
Bohm (1951). The FQMT even claims that a measurement in which the joint
system can approximately be considered as a closed quantum mechanical
system should, in principle, be just one special case of the general theory.

The FQMT was originated by von Neumann (1932) and has been developed by
several authors (Pauli, 1933; London and Bauer, 1939; Liiders, 1951; Ludwig,
1954) at different levels of generality. Stifimann (1958) studies the case where
the initial state is a product state and the object and the apparatus are both in
a statistical state. SiiBmann considers measurements of the first kind (the state
of the object after the measurement is an incoherent superposition of eigen-
states of the object observable), where the observables are allowed to have a
degenerate spectrum (complete versus incomplete measurements). The same
results have been independently rederived by Komar (1962) and Wigner (1963).
D’Espagnat (1966) and Earman and Shimony (1968) extended the analysis
to measurements of the second kind (the final state of the object does not
necessarily commute with the object observable). Finally, Fine (1969, 1970)
allows for more general correlations between the initial and the final probability
distribution.

However, two physically important situations have not been considered in
the framework of FQMT so far.

(1) Physically, the initial state is not necessarily a product state. There
could exist a weak correlation between the object state and the apparatus
state such that at the initial time the apparatus is still in its neutral state.

E.g., Primas (1970) regards the assumption that the system is intially in a
product state as a serious weakness of the traditional theory.

(2) All the observables so far studied in the FQMT have a pure point spec-
trum. However, physically important observables have a continuous spectrum,
as for example the energy in scattering experiments and the position. [To the
best of my knowledge, only Ludwig (1954, p. 135) considers the problem of
the measurement of an observable with continuous spectrum. He requires that
the final state of the object should be a function of the object observable —a
condition that cannot be fulfilled. Ludwig then concludes that an observable
with continuous spectrum can only be measured approximately, in the sense
that it is approximated by observables with pure point spectra and that those
observables are ideally measured. Since we do not restrict ourselves to measure-
ments of the first kind, we will obtain exact measurements of observables
with continuous spectra. [Cf. also Appendix B.]

In this paper, we will see that both cases can be incorporated naturally into
the FOMT. At the same time the general structure of the FQMT is clarified.

2. The Definition of a General Measurement

First, we want to introduce some notation. Let #, be the Hilbert space
corresponding to the object and L be the object observable to be measured.
L is a self-adjoint operator in 37, with spectral measure Ez(-). By #,4®
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X 40 we denote the Hilbert space corresponding to the measuring apparatus,
where 0 is the subspace belonging to the neutral state of the apparatus.
Let the self-adjoint operator 4 with spectral measure £ 4( - ) represent the
apparatus observable. For simplicity, we define 4 [ #, 0 =0. 4, denotes the
projection operator with range 0. The Hilbert space of the joint system is
H= H,Q(Hs D H4°)

The initial state of the joint system is represented by a statistical operator
WE #(H#), where S () is the set of all statistical operators (density matrices)
on #. However, the set ¥; of initial states is limited by the requirement that
at the initial time the apparatus should be in its neutral state. Thus we have the
following:

(A) The set W; of initial states is defined by

W; = (WESL () t[W(18A44)] =11 @1

A state W € I, is not necessarily a product state. Therefore, we included here
the case where the object state and the apparatus state are initially already
correlated [cf. (1) of the Introduction].

The evolution from the initial state W € 2B; to the final state Wy is caused
by a unitary transformation U on #: W W, = UWU*. Obviously, not every
unitary transformation constitutes an L measurement by means of the appara-
tus observable A. We have to require that our apparatus really functions, i.e.,
the apparatus should not remain in its neutral state.

{B) The set Wy of final states is restricted by

B, = UWU* C (W E £ ()| [ W(1®4,)] =0} (2.2)

Since U is derived from an interaction, physically, the following is clear:
(C) U is independent of the initial state W € 93;.
From (A)-(C) we conclude the following:

Lemma 1. The unitary operator U is the sum of two partial isometries
Vand V1 = U — V. The initial subspace of Vis #; ® #,4° and the
final subspace of V is contained in 57 ® #,. For all W € 1; the

probability measure tr[UWU*(1QE 4(-))] depends on U only through
V.

Remark. As a consequence, many authors only specify V.

Proof. (A) implies W | #7 ® #, = 0 and (B) implies UWU* | #, ® #,° =
0 for every W € IB;. Thus U maps #; ® #,° into #; ® #,. Since VIWV1* =
0, we have tr[VAWVIS(1IQE (- )] = 0.0

The reading of the probability distribution uypy=: = t[UWU(1Q E4())]
of the apparatus observable in the final state UWU* should produce some
information about the probability distribution uy: = tr[W(EL (-)®1)] of the
object observable in the initial state W. Thus U should induce a suitable mapping
of probability measures on R into itself. To study the properties of this mapping
we have to introduce some further notation. Let C..(R) be the Banach space
of all real-valued continuous functions on R vanishing at infinity. Then, by the
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theorem of Riesz-Markov, the dual C.{R)* is the space of all real-valued
bounded measures on R and the positive portion C (R)¥ 4 of the unit sphere
of C(R)* is the space of all probability measures on R. We will use the norm
topology on Cu (R)* (which is sometimes called the norm of total variation).
If u € Coo (R)* and if ¢t = iy — p— is the unique Hahn decomposition (Hewitt
and Stromberg, 1969) of g, then | ull = Il el + -1l = p(R) + u—(R)
(Reed and Simon, 1972).

The set M; of probability distributions of the object observable in the
various initial states is given by

M; = {uw = e [WEL IR D] IWEB;} C Cu(R)T+ (2.3)

and the corresponding set 9y of probability distributions of the apparatus
observable in the various final states is given by

M= {uywys = t[UWUFAQEL (- DHWEBW;} C Co(R)+.  (24)
The dependence of M, on U is understood. We have the following Lemma:

Lemma 2. MM; and My are closed convex subsets of Coa(R)*.

Proof. Let Mt be the set of measures uy = tr[W(EL (- )®A)], where W is
an arbitrary self-adjoint trace class operator on #7,® #,4°. I, is the set of
probability measures in 9. By the spectral theorem, there exists a finite
measure space (£2, 0), and a real-valued unitary transformation V': #7 ® #4°
- #2(Q, 0), and a real-valued Borel function F': 2 = R such that

[VL®A40)V  ¥](x) = Fex)(x) (2:5)

x € 2, where ¥ € #2(£2, 0) is in the domain of V(L& 4,)V 1. In this repre-
sentation, a measure uy € M is given by

m@)= |3 Nl @) dot) 2.6)
F(a)

for any Borel set A C R. Equation (2.6) defines a mapping of %! (Q, o) (the
Banach space of all measurable real-valued absolutely integrable functions on
Q) onto M, which is, however, in general not one-to-one. Therefore, we
replace f € $R £, o) by the conditional expectation f of f with respect to
the ¢ subalgebra generated by F. Using the image measure ¢ © F~! of ¢ under
F we obtain

Mo u@)= | fdo= | fao=[foFtacer @)
Fa) F7(a) A
Equation (2.7) defines a one-to-one linear mapping I: %' (R, 0° F~1) M.
Since liglly = g do e F~1[, s an isometry, which implies that 9 is a closed
linear subspace of C..(R)*. Now I 1 9%; is the set of all positive functions in
Z L (R, 0° F~1) with norm 1. Since this set is closed and convex in £} (R,
oo F1), M; is closed and convex in C..(R)*. The proof for M is the same. [J
In order that U constitute an [ measurement by means of the apparatus
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observable A, the sets of probability distributions 9; and Wi, should stand
in a definite connection. Thus we postulate the following:

(D) For any Wl N Wz S QBI‘ HW1 = [,L],V2 lmplles that I“[Uwi U= Myw,u+ or,
equivalently, the mapping K : uy ~ uywy+, W € I;, defines a mapping from
W,’ to M 7

Let us define an equivalence relation in 9B; (and in 9B, respectively) by
W, ~ W, if and only if pyy = pyy, . ; (Wy) is then partitioned into mutu-
ally disjoint equivalence classes [W] . Now we can rephrase (D): U should
map equivalence classes of 3, into equivalence classes of 2. In this formu-
lation it is easily understood that without (D) the reading of yy e+ would,
in general, give no information about uyy. If one chooses different W € [W],
the initial probability distribution stays the same, whereas the images
pywu* € My vary over a “large part” of M, and overlap with many other
measures in Y, which result from completely different initial probability
distributions. This can explicitly be seen in the measurement discussed in
Appendix A, Obviously one can have the border cases where for a certain
subset of I, (D) is fulfilled and for its complement (D) i$ not valid. Here
we just want to exclude such malfunctioning apparatuses.

The mapping K : 9R; - I is surjective, but not necessarily one-to-one. We
have, thus, still included the possibility of a coarsening measurement.

We could invert postulate (D) by requiring that K : uywy -y, W €W,
define a mapping from i to M. This would correspond to a refining
measurement. (E.g., To “spin up” there would exist three exits at the appa-
ratus.) The analysis of this case is essentially the same as the one carried through
here. Since in physics refining measurements do not seem to occur (or, if so,
only in a very artificial manner), we will omit this case from our further
considerations.

We still have the possibility of partly refining and partly coarsening measure-
ments. We then split M; into M,© and M;” such that U is coarsening on M, and
refining on R;". Thereby, this case is reduced to the two previous ones.

Since U is continuous and linear, the induced mapping X is continuous and
affine !

Lemma 3. The mapping K : M; — My of postulate (D) is continuous
and affine.

Proof. Let b €My, 7=1,2. Then K(puw, + (1 —pluw,) =
K(upw, +(1 —pyw, ) = Phow, u++ (1 — P)uyw,u* = PKQuw,) + (1 — p)K(uw,)-
Thus K is aftine.

We now use the notation of the proof to Lemma 2, Let u; € 9%; bea
sequence converging to u € ;. Then the sequence f; =7 e Lt (R,
0 ° F~1)converges in norm to f=1"1y; € L1 (R, o © F~1), which implies

I fieF—feF|ly»0in Lt (Q,0).Let ¥; =F°F, ¥ =+/f° Fand W; =

1 Jet X and Y be vector spaces, C a convex subset of X. A map T: C - Y is called affine
Tpx+ A -p)=pTe)+ (1 —p)T(y)forallx,yeC,0<p<1.Cf. Reed and
Simon, 1972.
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[; > (W1, W=1y)<y| . Then tr | W; — W| - 0. Let W; and W be the images
of W; and W under V-1 extended by zero on #, ® #;. Then W;, W € W;,
1 = Wy 1= gy, and tr| Wy — W| - 0. This implies tr | UW,U* — UWU*| 0.
The same argument as in the proof to Lemma 2, now applied to the subspace
H ® #, and the operator 1®A | #, ® H#,, shows that tr| UW;U* —
UWU *| - 0 implies the .#1 convergence in the representation space, from
which we obtain, ||uyw;us — muwo Il = 1K() — K@)l = 0. This proves
the continuity of K. [J

For further reference we state the requirements (A)-(D) as a formal
definition:

Definition 4. A unitary transformation U : #~ 3 is called a general
(L-A) measurement if for all Wy, W, € W; = {WE.Z (#)|tr [W(1®

Al =1}

(@) tr [UW,U*(1®4,)] =0

and

®) tr (W EL(C)D)] =tr WL (EL()®1)]
implies that

tr [UW, UR(IQE4(+))] = tr [UW,U(A® E» ()]

At the end of this section we want to compare our Definition 4 with the
definitions given by Fine (1969), which so far constituted the most general
measurement scheme. (1) In Fine’s treatment the initial state is a product
state. (2) He requires that L and 4 both have a pure point spectrum. There-
fore the measures in 9; and 9N, are discrete and can be considered as measures
overJ={1,2,...,n}, n €N,orJ =N, (3) The mapping K is required to be
one-to-one. Fine gives K in matrix form. From Lemma 3 we conclude that K
has to be an invertible stochastic matrix: If {p;}reys = p is 2 probability vector,
then (Kp); = % s myp;, where 0 <m;; <1and Z;¢ ;7 m; = 1. (This can be seen
as follows: With e = {0, ..., 1,0, ...}, where the 1is at the jth entry, we
define m;; = (Ke(),. By linearity and continuity we can extend X to all
probability vectors in the above form.)

3. Simple Measurements and Their Classification

Definition 4 is extremely general. In physically realistic measurements the
mapping K : M; > M usually has a relatively simple structure. Thus it is
worthwhile to begin by studying the simplest case, namely K = 1, in more
detail.

Definition 5. A general (L-A) measurement U is called a simple (L-A)
measurement, if pgwy+ = uw for all W e,

For many applications this definition seems to be too restrictive. For
instance, the probability distribution of the object observable in the state W
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could be concentrated on the points {0,1,2}, whereas the probability distri-
bution of the apparatus observable in the state UWU* is the same, but con-
centrated on the points {3,4,5}. This is a simple shift of the measuring scale.
Thus we should generalize it to the following:

Definition 6. A general (L~A) measurement U is called an (L~-4)
measurement, if there exists a real-valued Borel function fon R such
that upwp* = the © f 1 forall WE W,

The analysis of an (L-4) measurement can be reduced to that of a simple
(L-A)-measurement.

Lemma 7. If U is an (L-A) measurement (with respect to the Borel
function f), then U is a simple [{L)-A] measurement.
Proof. By definition we have for all W € 9B, and all Borel sets A CR

e {WIEL(F (AN ®1] )= tr [UWUH(IQE4(8))] = tr [W(Eg(8)®1)]

3.1)

The second equality follows from the spectral theorem. O

By studying simple examples, one can convince oneself that, for more
general mappings K : 9; - M, such a reduction is impossible (cf. Appendix A).

Definition 6 seems to include most cases of physical interest. If fis one-to-
one we have a rescaling, of which an example has been given above. In general,
an {L-A) measurement will be a coarsening measurement. For example, let us
assume that we want to measure the position observable x, but that the measur-
ing apparatus only has the finite resolution €. Then the apparatus observable
could be taken as T,,5 neP, with suitable projection operators P,. A simple
measurement results, if x is replaced by f(¥), where fis the “staircase”-function
[(n — 1)e, nel—ne. Thus, in effect, owing to the finite resolution of the
measuring apparatus, only the coarsened position observable f(x) is measured.

Simple measurements can be analyzed in complete detail.

Lemma 8. Let U be a general (L-A) measurement and U =V + V*
be as in Lemma 1. Then U is a simple {L~4 ) measurement, if and
only if

L®A,=V(1®A)YW*and [VV*, 1QA] =0 (32)
(i.e., VV* #is a reducing subspace for 1&® 4).

Proof. “=" From the definition of a simple (L~A4) measurement it follows
that tr [W(EL(A)®1)] = tr [WU(IQE 4 (A)U] for all W€ I; and all Borel
sets A CR. Therefore £, (A)®1 = US(1QE 4 (A)U on #; ® #,4° or by
the definition of V: E; (A)®Aq = V*(1R E 4 (A))V. Since on the left-hand
side we have a projector, we conclude VV* (1@ E 4 (ANVVHIQE (ADVV* =
VV*(1Q E 4 (A)VV* which is valid only if [VV'*, 1®E4(A)] = 0. From the
spectral theorem it follows that L&A, = V*(1®A)V and [VV*,1QA4] =0.
“e Since [VV*, 1®A4] =0, [VV*, 1®E 4 (A)] =0 for all Borel sets
A CR. This implies that V#(1Q E 4 (A))V is the spectral measure of V*(1&®A)V.
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By the uniqueness of the spectral measure £7 (AYR A, = V(1 ® E (A)V.
Since W=0o0n # ® #, foral WEW;, U=V + V-t is a simple (L-4)
measurement.

Corollary 9. Let U=V + V1 be a simple (L-4) measurement and L
and A4 have the pure point spectrum {A\; |k € I}. Then V is the sum of
partial isometries Vi, k €I: V Zpe Vi, such that ¥ has as initial
subspace (B, ({\}Y® Ay)o and as final subspace

(ARE (N VV*HC (1QE, (M) H.

Proof. From the preceding proof we have E; ({(A; DR A, = V*(1®
Eg({N D)V Since [VV*, 1Q E, ({N D] =0, this implies V(&L (A HR A)V* =
(QEL({(MINVV*<I®E (M 1)-O

Lemma 8 and Corollary 9 clarify the structure of a simple (Z~4) measure-
ment U. U is the sum of two partial isometries ¥ and V. ¥ has to produce a
unitary equivalence between L& A4, and 1® 4 restricted to VV* #, whereas
V is completely arbitrary. In the case of a pure point spectrum, V can be
further decomposed into V'= Zy<;V;, where each ¥y has to map the subspace
IEL (M })®A 4] A isometrically into the subspace [1® E4 (I D] H#.
Otherwise, the Vs are arbitrary. By specifying the V}’s we could now dis-
tinguish between various kinds of measurement. For example, one could
require that the final state of the object (i.e., UWU* reduced to #; ) commute
with L or, even stronger, the validity (or the weak version) of von Neumann’s
projection postulate. To a certain extent this would then fix the relative
position of the final subspace of Vi in [1Q E 4 ({\;})] # for all k and, there-
by, restrict V7. Since these and similar problems have been studied extensively
in the literature (SiBmann, 1958; Fine, 1969; Herbut, 1969), we do not want
to go into any details here.

4. The Problem of Measurement

The quantum mechanical measuring process is a rather controversial subject.
We do not want to enter into this discussion here. We will only prove that, for
the compietely general measuring scheme discussed in Section 2, the same prob-
lems remain (if one considers them as problems at all).

On different grounds many authors feel that the final state of the joint
system should commute with 1® A. But this requirement is in contradiction
with the linear laws of quantum mechanics as shown by the following theorem.

Theorem 10. Let U be a general (L-4) measurement. If there exist
two initial states Wy, W, € 9B; such that tr [UW, U*(1®4)] # tr [UW,U*-
(1&® A4)], then there exists an intital state W € W, such that [UWU*, 1® 4] #0.

Remark. One consequence of this theorem usually comes under the heading
“The Paradox of Schrédinger’s Cat,” which is generally formulated in terms of
a measuring process. But we emphasize that this theorem is completely inde-
pendent of the fact that U is a general (L-4) measurement. It merely states
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that the sum of two eigenvectors of a certain operator is not an eigenvector
unless they both belong to the same eigenvalue.

Proof. If [lUWU*, 1® A] #0 for some W €IB;, the assertion is trivial.
Thus we can assume [UWU*, 1® A] = 0 for all W € IB;. this implies
1904 T U(H#; @ #4°) =1 and, therefore, tr [UWU*(1®A)] = A for all
W e ;, which contradicts tr [UW, U*(1®A4)] # tr [UW,U*(1® 4)] for
some initial states W,, W, € I, [

In view of Theorem 10, it is well justified, for the study of more philosophi-
cal issues and questions of interpretation, to use the simplest quantum mech-
anical measurement scheme, namely, where 5 is two dimensional and
Hy ® H40 is three dimensional (Jauch, 1968). This opinion is further sup-
ported by the easy calculations deferred to Appendix A. There we show that
all the different cases discussed in Sections 2 and 3, with the exception of the
measurement of an observable with continuous spectrum, already occur in this
simple measurement scheme.
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Appendix A

Let dim %L = 2,L = )\1L1 + 7\2L2,Lj\‘1/}, = l,{!},, dim ‘#A = 2,A = )\lAl +
MNpdy, Ami=n;,7=1,2, X1 #X, # 0 and let ng be the neutral state of the
apparatus: Ayng = 1ng- (The simplifying assumption that L and A4 have the
same eigenvalues is not a loss of generality. This can always be achieved by
taking a suitable function of 4. The cases where either L or 4 are multiples
of the identity operator are easily discussed, but of no special interest.) Let
U: #— A be a unitary transformation satisfying postulates (A)~(C) of
Section 2. By Lemma 1, it suffices to specify the mappings

Vi® M= 91 =X @11 +X,0,®@1n; +X30 @M +x40,Q 7,
and

Va@Nok>02 =11 ¥1®n; + 1,0, @0 + 39, @ mp +¥a¥, @,y

The complex-valued vectors x and y must be thought to be given with the
instrument as part of the operating manual. Since x and y have to define a
partial isometry, they are restricted by ix]=1={yland x - y = 0.
Given an arbitrary initial state Y(e, §) = af;® 1y + fY, &g, la|? +
I812 = 1, the probability distribution of the object observable L in the initial
state Y(a, §) is
la)?
m@n=| (A1)
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The probability distribution of the apparatus observable 4 in the final state
£=qp; + P, is then

(13, 12+ 1, 12) + 1812134 12 + 192 1%) ]
+af*(x,yF +x,9%5) +cc.
ugle, B,x,y) = (A2)
lal2(1x31% + 124 1) + 1817 (1y3 1> + 174 1%)

| +of*Ceaps +xapd) + o

If x, % +x,v5 #0 Fx39% + x4v% and if we let the phase of ¢ and § change,,
then the initial probability distribution does not change, whereas the final
probability distribution varies over a whole interval. Thus we obtain a diffuse
image of the initial probability distribution, which becomes more and more
precise as x; 5 +x,75 ~ 0 (and therefore also x33% + x,y% = 0). If x, yF +
X,y3 =0=x39% +x4y%, Uis a general (L-4) measurement. The stochastic
matrix relating initial and final probability distributions is.given by

12+ [x, 12 iy1i2+ly212}

(%312 +1x412  [¥31% + |yql?

fxq
(A3)

Uis a simple (L-A4) measurement, if |x; [% + |x, |2 =1 =|y;5|? + |y,12. This
condition expresses that ¢, € (1® 4} # and ¢, €(1Q 4,)H#.

Appendix B

Let #, = L3R, dx),L=x, #4 = L*(R,dy), A=y, and #,° = C.We
define a unitary operator U: s# — o such that U arbitrarily maps #; & #,
onto #O[(Co)® #,4 ] and such that U(Y®n) = ¢®y for all Y € 7, where
nE # 4° and ¢ € H#;, are of the norm 1. Then

NEL@)®1]y@nl? = | 1v12eax

A
= I[1QE (D)@ VII? (B1)

Thus Uis a simple measurement of the position observable x.
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