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A bs tract 

In the framework of  the quantum mechanical measurement theory we study measure- 
ments where the state of  the object and the state of  the apparatus are initially already 
correlated. We show that the usual difficulties extend to the measuring schemes con- 
sidered here. The general structure of  the theory is clarified. 

1. Introduction 

In abstraction of  many actual measurement procedures in atomic and 
nuclear physics, the formal quantum mechanical measurement theory (FQMT) 
considers the following extremely simplified situation: At some initial time 
(the time before the measurement) the object considered (e.g., elementary 
particle, atom, molecule) is in some state and the measurement apparatus 
(e.g., Geiger counter, bubble chamber, photographic plate, etc.) is in its neutral 
state (untriggered or metastable state). The object and the apparatus interact 
in such a way that at some final time (the time after the measurement) the 
probability distribution of the apparatus observable in the final state is corre- 
lated to the probability distribution of the object observable in the initial state. 
By "reading the scale" one determines the distribution of the values of the 
apparatus observable from which one can infer the distribution of the values of 
the object observable. In this sense, the object observable is measured. 

The FQMT is formal, since it only considers abstract Hilbert spaces, abstract 
observables, and states. Furthermore, the interaction is represented by a suit- 
able unitary transformation in the Hilbert space of the joint system. This 
unitary transformation is not constructed with the use of a physically realistic 
Hamiltonian operator. However, the FQMT is not unphysical. In fact, as shown 
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by different authors, there are many actual measuring procedures that, approxi- 
mately, fall under the general scheme of FQMT. As one typical example we 
should mention the Stern-Gerlach experiment, as analyzed for instance by 
Bohm (1951). The FQMT even claims that a measurement in which the joint 
system can approximately be considered as a closed quantum mechanical 
system should, in principle, be just one special case of the general theory. 

The FQMT was originated by yon Neumann (t932) and has been developed by 
several authors (Pauli, 1933; London and Bauer, 1939; Ltiders, 1951; Ludwig, 
1954) at different levels of generality. Stif~mann (1958) studies the case where 
the initial state is a product state and the object and the apparatus are both in 
a statistical state. Stit~mann considers measurements of the first kind (the state 
of the object after the measurement is an incoherent superposition of eigen- 
states of the object observable), where the observables are allowed to have a 
degenerate spectrum (complete versus incomplete measurements). The same 
results have been independently rederived by Komar (1962) and Wigner (1963). 
D'Espagnat (1966) and Earman and Shimony (1968) extended the analysis 
to measurements of the second kind (the final state of the object does not 
necessarily commute with the object observable). Finally, Fine (1969, 1970) 
allows for more general correlations between the initial and the final probability 
distribution. 

However, two physically important situations have not been considered in 
the framework of FQMT so far. 

(1) Physically, the initial state is not necessarily a product state. There 
could exist a weak correlation between the object state and the apparatus 
state such that at the initial time the apparatus is still in its neutral state. 
E.g., Primas (1970) regards the assumption that the system is intially in a 
product state as a serious weakness of the traditional theory. 

(2) All the observables so far studied in the FQMT have a pure point spec- 
trum. However, physically important observables have a continuous spectrum, 
as for example the energy in scattering experiments and the position. [To the 
best of my knowledge, only Ludwig (1954, p. 135) considers the problem of 
the measurement of an observable with continuous spectrum. He requires that 
the final state of the object should be a function of the object observable - a 
condition that cannot be fulfilled. Ludwig then concludes that an observable 
with continuous spectrum can only be measured approximately, in the sense 
that it is approximated by observables with pure point spectra and that those 
observables are ideally measured. Since we do not restrict ourselves to measure- 
ments of the first kind, we will obtain exact measurements of observables 
with continuous spectra. [Cf. also Appendix B.] 

In this paper, we will see that both cases can be incorporated naturally into 
the FQMT. At the same time the general structure of the FQMT is clarified. 

2. The Definition o f  a General Measurement 

First, we want to introduce some notation. Let 3¢f L be the Hilbert space 
corresponding to the object and L be the object observable to be measured. 
L is a self-adjoint operator in g L  with spectral measure EL (").  By g A G  
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o~f" A 0 we denote the Hflbert space corresponding to the measuring apparatus, 
where o~ffA o is tile subspace belonging to the neutral state of the apparatus. 
Let the self-adjoint operator A with spectral measure E A ( .  ) represent the 
apparatus observable. For simplicity, we defineA ~ WA 0 = 0. A o denotes the 
projection operator with range OVgA°. The Hilbert space of the joint system is 
X '=  ~ L ®  (~A @ ~A0) • 

The initial state of the joint system is represented by a statistical operator 
W E S~(o~), where 6a(~f) is tile set of all statistical operators (density matrices) 
on o~ff. However, the set ~13 i of initial states is limited by the requirement that 
at the initial time the apparatus should be in its neutral state. Thus we have the 
following: 

(A) The set ?~B i of  initial states is defined by 

ftB i = (W E Sf (JF)[tr[ W( I ® A o )  ] = 1} (2.1) 

A state W E ![B i is not necessarily a product state. Therefore, we included here 
the case where the object state and the apparatus state are initially already 
correlated [cf. (1) of the Introduction]. 

The evolution from the initial state W E ~liB i to the final state Wf is caused 
by a unitary transformation U on o~°: W ~+ Wf = UWU*. Obviously, not every 
unitary transformation constitutes an L measurement by means of the appara- 
tus observable A. We have to require that our apparatus really functions, i.e., 
the apparatus should not remain in its neutral state. 

(B) The set !~Bf of  final states is restricted by 

gl3f= UfLBiU* C {W @ 5e(o~ff)ttr[W(l®Ao)] = 0} (2.2) 

Since U is derived from an interaction, physically, the following is clear: 
(C) U is independent of the initial state W E ~ i .  

From (A)-(C) we conclude the following: 

Lemma 1. The unitary operator U is the sum of two partial isometries 
Vand V ± = U -  V. The initial subspace of Vis ~ L ®  °erA° and the 
final subspace of V is contained in d/fL ® JedA. For all 1¥ E ~ i  the 
probability measure t r [ U W U * ( I ® E  A ( . ) )]  depends on U only through 
V. 

Remark. As a consequence, many authors only specify V. 
Proof. (A) implies W ~ dog L ® ~A = 0 and (B) implies UWU* ~ d/f L ® YtoA ° = 

0 for every W E ![B i. Thus U maps of~ L @ ~ A  0 into ~t°L ® 5(fA. Since V±WV ±* = 
0, we have tr[V±WV±*/(I®EA ("))] = 0. [] 

The reading of the probability distribution/lower.: = tr [UWU*(1 ®EA('))]  
of the apparatus observable in the final state UWU* should produce some 
information about the probability distribution/lw: = tr[W(EL( ")® 1)] of the 
object observable in the initial state W. Thus U should induce a suitable mapping 
of probability measures on R into itself. To study the properties of this mapping 
we have to introduce some further notation. Let C~(R) be the Banach space 
of all real-valued continuous functions on ~ vanishing at infinity. Then, by the 
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theorem of Riesz-Markov, the dual C~(~)* is the space of all real-valued 
bounded measures on IR and the positive portion C~ (~)~+ of the unit sphere 
of C(R)* is the space of all probability measures on ~.  We will use the norm 
topology on C~(~)* (which is sometimes called the norm of total variation). 
If p E C~ (R)* and if p = p+ - p_ is the unique Hahn decomposition (Hewitt 
and Stromberg, 1969) of U, then I[ P ]1 = [I p+[] + [] p-][ = p+(R) + p - (~ )  
(Reed and Simon, 1972). 

The set 991 i of probability distributions of the object observable in the 
various initial states is given by 

92~i = { p w = t r [ W ( E L ( . ) ® l ) ]  [WEf lB i }CC~(g~)*  + (2.3) 

and the corresponding set 9Jlf of probability distributions of the apparatus 
observable in the various final states is given by 

~JJtf= {Uuwu* = t r [ U W U * ( I ® E A (  "))11WEftBi} C C~(~)*+. (2.4) 

The dependence of 9)lf on U is understood. We have the following I_emma: 

Lemma 2. 924 i and 9Jlf are closed convex subsets of C=(N)*. 
Proof. Let 99l be the set of measures Pw = tr[W(EL( ")®A0)],  where Wis 

an arbitrary self-adjoint trace class operator on YgL ® YgA 0.9~Ai is the set of 
probability measures in gJt. By the spectral theorem, there exists a finite 
measure space (~2, a), and a real-valued unitary transformation V : YgL ® YgA ° 
-+ £Z2(~2, O), arid a real-valued Borel function F :  ~2 -+ R such that 

[ V(L® A o ) V  -1 ~](x) = F(x )~ (x )  (2.5) 

x E ~ ,  where ~ C 54'2 (f~, o) is in the domain of V ( L ® A o ) V  -1 . In this repre- 
sentation, a measure Pw E 9Yt is given by 

uw(a) = f ~ Xkl~ktz(x)do(x) (2.6) 
k F -1 (A) 

for any Boret set A C N. Equation (2.6) defines a mapping of .o.¢al (~2, o) (the 
Banach space of all measurable real-valued absolutely integrabte functions on 
~ )  onto 9Yt, which is, however, in general not one-to-one. Therefore, we 
replace f C  ~ 1  (fZ, o) by the conditional expectation ]~offwith respect to 
the o subalgebra generated by F. Using the image measure o o F-1  of ~ under 
F we obtain 

F -~ (a) F-~(a) A 

Equation (2.7) defines a one-to-one linear mapping I : ~ o l  (N, o ° F - l )  .+ 931. 
Since [Ig II ~ = II g do ° F-1  II, I is an isometry, which implies that 93l is a closed 
linear subspace of C~(N)*. Now 1-1 ~ i  is the set of all positive functions in 
~ a  1 (N, e ° F -1) with norm 1. Since this set is closed and convex in £g~ (N, 
e o F-1 ), 9Jt~- is closed and convex in C~ (R)*. The proof for 9~f is the same. [3 

In order that U constitute an L measurement by means of the apparatus 
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observable A, the sets of  probability distributions gJ~i and ~JJ~; should stand 
in a definite connection. Thus we postulate the following: 

(D) For any W1, W 2 E ~[B i/1wl =/lw2 implies that Puw, u* = lauww* or, 
equivalently, the mapping K :/2 w ~ lauwg, ,  W E ftBi, defines a mapping from 
~°~ i to 9)ly.. 

Let us define an equivalence relation in ~/B i (and in ~ f ,  respectively) by 
W 1 ~ W 2 if and only if/2w, =/~w~- ~ i  ( ~ f )  is then partitioned into mutu- 
ally disjoint equivalence classes [W]. Now we can rephrase (D): U should 
map equivalence classes of  ~[~i into equivalence classes of  ~0t~f. In this formu- 
lation it is easily understood that without (D) the reading of  t l gwg ,  would, 
in general, give no information about/1 w. If  one chooses different W E [W], 
the initial probabili ty distribution stays the same, whereas the images 
IJuwu* E gJ~f vary over a "large part"  o f  ~Jt; and overlap with many other 
measures in 8J~f which result from completely different initial probabili ty 
distributions. This can explicitly be seen in the measurement discussed in 
Appendix A. Obviously one can have the border cases where for a certain 
subset o f  ~[Bi (D) is fulfilled and for its complement (D) is not valid. Here 
we just want to exclude such malfunctioning apparatuses. 

The mapping K : ~0~ i ~ ~I~f is surjective, but not necessarily one-to-one. We 
have, thus, still included the possibility of  a coarsening measurement.  

We could invert postulate (D) by  requiring tha t /£  : 12uwu. ~-+liw, W E ~I~i, 
define a mapping from ~ f  to 9Jl i. This would correspond to a refining 
measurement. (E.g., To "spin up" there would exist three exits at the appa- 
ratus.) The analysis of  this case is essentially the same as the one carried through 
here. Since in physics refining measurements do not seem to occur (oI, if  so, 
only in a very artificial manner),  we will omit this case from our further 
considerations. 

We still have the possibility of  partly refining and partly coarsening measure- 
ments. We then split gJl i into 9)ti e and 9Jti r such that U is coarsening on 9J~i c and 
refining on ~l i  r. Thereby, this case is reduced to the two previous ones. 

Since Uis continuous and linear, the induced mapping K is continuous and 
affine. 1 

Lemma 3. The mapping K : gJl i ~ g J l f  of  postulate (D) is continuous 
and affine. 

Proof Let/~w] E ~O~i, j = 1,2 .  Then K(pllwl + (1 - p)flw2 ) = 
K(l~pw, +(1 -p)  W~ ) = Pl2uw, u* + (1 - P)12uw2u* = pK(.law,) + (1 - p)K(j.tw~)" 
Thus K is affine. 

We now use the notat ion of  the proof  to Lemma 2. Let ~j E 93t i be a 
sequence converging to/1 E 93t i. Then the sequence ~ = 1-11aj E ~ (R, 

° F -1)  converges in norm to f =  I -a /a j  E ,971 (R,  a ° F - l ) ,  which implies 
I[ J) o F - f o  F 11~ -+ 0 in .o97 d (~2, (x). Let @ = V~]-~-F, ~ = ~ and l~] = 

1 Let X and Y be vector spaces, C a convex subset  of  X. A map T : C -+ Y is called affine 
if  T(px + (1 - p)y) = pT(x) + (1 - p)T(y) for all  x ,  y ~ C, 0 ~< p ~< 1. Cf. Reed and 
Simon, 1972. 
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[~j > ( ~]l ,  IV = I~)  (~[  - Then tr [ IV i - ~1 ~ 0. Let W i and IV be the images 
of  IVI and 1~ under V -1 extended by zero on J/re L ® O%fA. Then IVj, IVEf2Bi, 
~i = t'tw], # = #w,  and tr I Wj - tV[ ~ 0. This implies tr I UWiU* - UWU*I '~ O. 
The same argument as in the proof  to Lemma 2, now applied to the subspace 
J f z  ® HA and the operator 1 ® A  ) o~fz ® ~ ,  shows that trl UIViU* - 
UWU* ! ~ 0 implies the .~el convergence in the representation space, from 
which we obtain, HPuw, u* - Puwu*  II = ILK(#~) - K(g)ll ~ O. This proves 
the continuity of  K. [ ] "  

For further reference we state the requirements (A)-(D) as a formal 
definition: 

Definition 4. A unitary transformation U :2/f-~ W is called a general 
(L-A} measurement if for all I411, [4] 2 E ~[~i = £IV E ~a ( J f )  ltr [141(1® 
Ao)  ] = I} 

(a) tr  [UW 1 U*(1 ® A o )  ] = 0 

and 

(b) tr [W1(EL( ' )®  1)] = tr [ W 2 ( E L ( - ) ® I ) ]  

implies that 

tr [UIV 1U*(I ® E  A ( ' ) )]  = tr [UIV2 U * ( I ® E A  ( ' ) ) ]  

At the end of this section we want to compare our Definition 4 with the 
definitions given by  Fine (1969), which so far constituted the most general 
measurement scheme. (1) In Fine's t reatment the initial state is a product 
state. (2) He requires that L and A bo th  have a pure point spectrum. There- 
fore the measures in 932i and 9J/f are discrete and can be considered as measures 
over J = {1, 2 . . . . .  n}, n ~ N ,  or J = N. (3) The mapping K is required to be 
one-to-one. Fine gives K in matrix form. From Lemma 3 we conclude that K 
has to be an invertible stochastic matrix: If  {Pk}k~J = P is a probabili ty vector, 
then (Kp)i = ~-q~j tel/P/, where 0 <-ni 1 ~< 1 and ZiE~r 7ri] = 1. (This can be seen 
as follows: With eO) = { 0 , . . . ,  t ,  0 , . . . } ,  where the 1 is at the j th  entry, we 
define 7ri] = (Ke(J))i. By linearity and continuity we can extend K to all 
probabili ty vectors in the above form.) 

3. Simple Measurements and Their Classification 

Definition 4 is extremely general. In physically realistic measurements the 
mapping K : 93li ~ 9)l/, usually has a relatively simple structure. Thus it is 
worthwhile to begin by studying the simplest case, namely K = 1, in more 
detail. 

Definition 5. A general (L-A)  measurement U is called a simple (L-A)  
measurement, if  Puwu* = Pw for all W EfiBi. 

For many applications this definition seems to be too restrictive. For 
instance, the probability distribution of  the object observable in the state W 
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could be concentrated on the points {0,1,2), whereas the probability distri- 
bution of the apparatus observable in the state UWU* is the same, but con- 
centrated on the points (3,4,5). This is a simple shift of  the measuring scale. 
Thus we should generalize it to the following: 

Definition 6. A general (L-A) measurement U is called an (L-A)  
measurement, if there exists a real-valued Borel function f o n  R such 
that Puwu* = Pw o f -1  for all WE ~ i -  

The analysis of an (L-A) measurement can be reduced to that of  a simple 
(L-A)-measurement. 

Lemma Z If U is an (L-A) measurement (with respect to the Borel 
function f) ,  then U is a simple [f(L)-A ] measurement. 

Proof. By definition we have for all W E ~ i  and all Borel sets A C R 

tr (W[ELOC-I(A))@t ] }= tr [UWU*(I@EA(A)) ] = tr [W(EI(L)(A)@I)] 

(3.1) 
The second equality follows from the spectral theorem. [] 

By studying simple examples, one can convince oneself that, for more 
general mappings K : 99l i -~ 9Jly, such a reduction is impossible (cf. Appendix A). 

Definition 6 seems to include most cases of physical interest. If  f is one-to- 
one we have a rescaling, of which an example has been given above. In general, 
an (L-A) measurement will be a coarsening measurement. For example, let us 
assume that we want to measure the position observable x, but that the measur- 
ing apparatus only has the finite resolution e. Then the apparatus observable 
could be taken as ~'nez nePn with suitable projection operators Pn. A simple 
measurement results, if x is replaced by f(X), where f is the "staircase"-function 
[(n - 1)e, ne]t--->ne. Thus, in effect, owing to the finite resolution of the 
measuring apparatus, only the coarsened position observable f ( x )  is measured. 

Simple measurements can be analyzed in complete detail. 

Lemma 8. Let Ube a general (L-A) measurement and U = V + V ± 
be as in Lemma 1. Then Uis a simple (L-A) measurement, if and 
only if 

L@A o = V( I@A)V*  and [VV*, I@A] = 0 (3.2) 

(i.e., VV* Ytqs a reducing subspace for I@A). 

Proof. "=~" From the definition of a simple (L-A) measurement it follows 
that tr [W(EL(A ) @1)1 = tr [WU*(I@EA(A))U] for all WE ~Bi and all Borel 
sets A C N. Therefore EL(A)@ 1 = U*(1 @E A (A))U on S/~aL @ ~ A  0 or by 
the definition of V:EL(A)@A o = V*(1 @EA (A))V. Since on the left-hand 
side we have a projector, we conclude VV*(1 @E A (A))VV*(1 @E A (A))VV* = 
VV*(1 @E A (A))VV* which is valid only if [VV*, 1 @E A (A)] = 0. From the 
spectral theorem it follows that L@A o = V*(1 @ A ) V  and [VV*, 1 @A] = O. 

" ¢ "  Since [VV*, t@A] = O, [VV*, I@EA(A)] = 0 for all Borel sets 
& C N. This implies that V*( I@E A (&))Vis the spectral measure of  V*(I@A)V. 
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By the uniqueness of the spectral measure E L (A)@A 0 = V*(1 ® EA(A))V. 
Since W = 0 on 2/d L ® 2/fA for all W E ~ i ,  U = V + V ± is a simple (L-A) 
measurement. 

Corollary 9. Let U = V + V ± be a simple (L-A) measurement and L 
and A have the pure point spectrum (Xg [ k E/} .  Then V is the sum of 
partial isometries Vg, k E I: V EkelVg,  such that Vk has as initial 
subspace (EL({Xk})'®Ao)Y and as final subspace 
(1 ® E A ( (X k })) V V * ~ C  (1 ® E  A ( ( ~  })) Y .  

Proof. From the preceding proof we have E L ({Xk })®A o = V*(1 ® 
E A ({Xg}))V. Since [VV*, I®EA((Xk})] = O, this implies V(EL((Xg})®Ao)V* = 
(I®EA(<Xk}))VV* < I®EA ({Xk}). [] 

[emma 8 and Corollary 9 clarify the structure of a simple (L-A) measure- 
ment U. Uis the sum of two partial isometries Vand V ±. Vhas to produce a 
unitary equivalence between L ® A  o and 1 ®A restricted to VV* ~ ,  whereas 
V is completely arbitrary. In the case of  a pure point spectrum, V can be 
further decomposed into V = Zk~iVk,  where each Vg has to map the subspace 
[E L ((3,/c }) ®A o ] -2(f isometrically into the subspace [ 1 ® E A ((Xg })1W. 
Otherwise, the Vg's are arbitrary. By specifying the Vk's we could now dis- 
tinguish between various kinds of measurement. For example, one could 
require that the final state of the object (i.e., UWU* reduced to 2/fL) commute 
with L or, even stronger, the validity (or the weak version) of yon Neumann's 
projection postulate. To a certain extent this would then fix the relative 
position of the final subspace of g k in [1 ® E  A ({X/c})] 2/f for all k and, there- 
by, restrict Vk. Since these and similar problems have been studied extensively 
in the literature (Stif~mann, 1958; Fine, 1969; Herbut, 1969), we do not want 
to go into any details here. 

4. The Problem o f  Measurement 

The quantum mechanical measuring process is a rather controversial subject. 
We do not want to enter into this discussion here. We will only prove that, for 
the completely general measuring scheme discussed in Section 2, the same prob- 
lems remain (if one considers them as problems at all). 

On different grounds many authors feel that the final state of the joint 
system should commute with 1 ®A. But this requirement is in contradiction 
with the linear laws of quantum mechanics as shown by the following theorem. 

Theorem 10. Let U be a general (L-A)measurement. If there exist 
two initial states W1, W2 E ~B i such that tr [UW 1U*(I ®A)] ~ tr [UW2U*- 
(I @A)],  then there exists an intital state W E ~13 i such that [UWU*, 1 ®A] ~ 0. 

Remark. One consequence of this theorem usually comes under the heading 
"The Paradox of Schr6dinger's Cat," which is generally formulated in terms of 
a measuring process. But we emphasize that this theorem is completely inde- 
pendent of the fact that U is a general (L-A) measurement. It merely states 
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that the sum of two eigenvectors of  a certain operator is not an eigenvector 
unless they both belong to the same eigenvalue. 

Proof. If  [UWU*, I ® A ]  ~ 0 for some W E2Bi, the assertion is trivial. 
Thus we can assume [UWU*, 1 ® A ]  = 0 for all W E ~ i .  this implies 
l®A ~ U(Jf L ® JgA °) = Xl and, therefore, tr [UWU*(1 ®A)]  = X for all 
W ~ ~[B i, which contradicts tr [UW1 U*(1 ®A)]  7 ~ tr [UW 2 U*(1 ® A)] for 
some initial states W1, 1¥ 2 E 2B i. [] 

In view of  Theorem 10, it is well justified, for the study of more philosophi- 
cal issues and questions of  interpretation, to use the simplest quantum mech- 
anical measurement scheme, namely, where J fL is two dimensional and 
24°4 ® JgA ° is three dimensional (Jauch, 1968). This opinion is further sup- 
ported by the easy calculations deferred to Appendix A. There we show that 
all the different cases discussed in Sections 2 and 3, with the exception of  the 
measurement of  an observable with continuous spectrum, already occur in this 
simple measurement scheme. 
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Appendix A 

Let dim ,fftaL = 2, L = XIL t + X2Lz,L]~] = @, dim JgA = 2 ,A = XlAt + 
X2A2, A/rq = r?i, ] = 1, 2, X 1 f X 2 # 0 and let 7o be the neutral state of  the 
apparatus: A o %  = % .  (The simplifying assumption that L and A have the 
same eigenvalues is not a loss of  generality. This can always be achieved by 
taking a suitable function o fA.  The cases where either L or A are multiples 
of  the identity operator are easily discussed, but of  no special interest.) Let 
U: J r - +  Jcf be a unitary transformation satisfying postulates (A)-(C) of  
Section 2. By Lemma 1, it suffices to specify the mappings 

I~/1@ nt~-->¢ 1 =XlI~/1@/'/1 +X2~d2@~ 1 +X3~Yl(~)r/2 + X 4 ~ 2 @ ' f l  2 

and 

~/2@'r/Ob-+(~2 =Yl t~ l@77 t  + Y 2 ~ 2 @ ~ I  +Y3~1@~/2  +Y4~2@T/2  

The complex-valued vectors x and y must be thought to be given with the 
instrument as part of  the operating manual. Since x and y have to define a 
partial isometry, they are restricted by !x I = 1 = lyl  and x ' y  = 0. 

Given an arbitrary initial state ~(a ,  13) = ~ 1 ®  % + 13~2®r~0, [al z + 
!/312 = 1, the probability distribution of the object observable L in the initial 
state if(a, t3) is [,~,2] 

= [J/312 j (A1) 
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The probability distribution of  the apparatus observable A in the final state 
= a¢1 + ~q51 is then 

l~12(lx= 12 + ix 212) + 1/312([yl [2 + lY212) - 

+ o¢*(x~y~ +x2y~) + c . c .  

u~(~, ~, x, y )  = 

1~12(1X3 t 2 + Ix412) + tfll2(lYa I e + tYa [2) 

(A2) 

If x l YT + xzy~ ~ 0 (: x3y~ + x4y~ and if we let the phase of  ~ and/3 change,, 
then the initial probability distribution does not  change, whereas the final 
probability distribution varies over a whole interval. Thus we obtain a diffuse 
image of  the initial probability distribution, which becomes more and more 
precise as x l y  ~ + x2y  ~ -~ 0 (and therefore also x3y ~ + xay ~ -+ 0). I f xay~  + 
x2y ~ = 0 = xaY~ + x4y~, U is a general (L-A) measurement. The stochastic 
matrix relating initial and final probability distributions isgiven by 

tx112+[x212  [ y l j 2 + l y 2 1 2 ]  

ix312 + ]x4l 2 tyal2  + l ya l2 ]  (A3) 

Uis a simple (L-A) measurement, if Ix I [z + ix 2 l z = 1 = lY312 + [Y412- This 
condition expresses that q~l E ( t '®A 1 ) ~ a n d  Cz E ( l ® A 2 ) ~ f .  

Appendix B 

Let ~ L  = ~ 2 ( R , d x ) ,  L =x,  9fA = ~P2(I~,dy),A =Y, and ~¢gA ° = C.We 
define a unitary operator U : ~t°~ oug " such that U arbitrarily maps 9fL ® ~¢FA 
onto ~¢t°O [(C~) ® ~A ] and such that U(~ ® ~) = ¢ ® ~b for all ff E Yt'L, where 
~ g f A  ° and qS~ -¢fL are of the norm 1. Then 

II[EL(A)®I]ff®r/II  2 = i I ~ 1 2 ( x ) d x  
A 

= 1] [1 ® EA (A)]q~@ ~ H 2 (B1) 

Thus Uis a simple measurement of  the position observable x. 
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